Comparison of different nonlinear solvers for 2D time-implicit stellar hydrodynamics
نویسندگان
چکیده
منابع مشابه
Comparison of different nonlinear solvers for 2D time-implicit stellar hydrodynamics
Time-implicit schemes are attractive since they allow numerical time steps that are much larger than those permitted by the Courant-Friedrich-Lewy criterion characterizing time-explicit methods. This advantage comes, however, with a cost: the solution of a system of nonlinear equations is required at each time step. In this work, the nonlinear system results from the discretization of the hydro...
متن کاملViscous Models Comparison in Water Impact of Twin 2D Falling Wedges Simulation by Different Numerical Solvers
In this paper, symmetric water entry of twin wedges is investigated for deadrise angle of 30 degree. Three numerical simulation of a symmetric impact, considering rigid body dynamic equations of motion in two-phase flow is presented. The two-phase flow around the wedges is solved by Finite Element based on Finite Volume method (FEM-FVM) which is used in conjunction with Volume of Fluid (VOF) sc...
متن کاملComparison of Solvers for 2d Schrödinger Problems
This paper deals with the numerical solution of both linear and non-linear Schrödinger problems, which mathematically model many physical processes in a wide range of applications of interest. In particular, a comparison of different solvers and different approaches for these problems is developed throughout this work. Two finite difference schemes are analyzed: the classical Crank-Nicolson app...
متن کاملNumerical comparison of Riemann solvers for astrophysical hydrodynamics
The idea of this work is to compare a new positive and entropy stable approximate Riemann solver by Francois Bouchut with a state-of the-art algorithm for astrophysical fluid dynamics. We implemented the new Riemann solver into an astrophysical PPM-code, the Prometheus code, and also made a version with a different, more theoretically grounded higher order algorithm than PPM. We present shock t...
متن کاملPreconditioned Implicit Solvers for Nonlinear PDEs in Monument Conservation
Mathematical models for the description, in a quantitative way, of the damages induced on monuments by the action of specific pollutants are often systems of nonlinear, possibly degenerate, parabolic equations. Although some of the asymptotic properties of the solutions are known, one needs a numerical approximation scheme in order to have a quantitative forecast at any time of interest. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Astronomy & Astrophysics
سال: 2013
ISSN: 0004-6361,1432-0746
DOI: 10.1051/0004-6361/201220725